Waste to Energy conversion pathways

Agricultural Residues
The most common agricultural residue is the rice husk. Other residues include sugar cane fibre (known as bagasse), coconut husks and shells, groundnut shells, cereal straw etc. A number of agricultural and biomass studies, however, have concluded that it may be appropriate to remove and utilise a portion of crop residue for energy production, providing large volumes of low cost material. These residues could be processed into liquid fuels or combusted/gasified to produce electricity and heat.

Animal Waste
There are a wide range of animal wastes that can be used as sources of biomass energy. The most common sources are animal and poultry manures. The most attractive method of converting these waste materials to useful form is anaerobic digestion which gives biogas that can be used as a fuel for internal combustion engines, to generate electricity from small gas turbines, burnt directly for cooking, or for space and water heating.

Sugar Industry Wastes
The sugar cane industry produces large volumes of bagasse each year which is potentially a major source of biomass energy as it can be used as boiler feedstock to generate steam for process heat and electricity production.

Forestry Residues
Forestry residues are generated by operations such as thinning of plantations, clearing for logging roads, extracting stem-wood for pulp and timber, and natural attrition. Wood processing also generates significant volumes of residues usually in the form of sawdust, off-cuts, bark and woodchip rejects. However it can be collected and used in a biomass gasifier to produce hot gases for generating steam.

Industrial Wastes
The food industry produces a large number of residues and by-products that can be used as biomass energy sources. These waste materials are generated from all sectors of the food industry with everything from meat production to confectionery producing waste that can be utilised as an energy source. Solid wastes include peelings and scraps from fruit and vegetables, food that does not meet quality control standards, pulp and fibre from sugar and starch extraction, filter sludges and coffee grounds.

Waste water
Liquid wastes are generated by washing meat, fruit and vegetables, blanching fruit and vegetables, pre-cooking meats, poultry and fish, cleaning and processing operations as well as wine making. These waste waters contain sugars, starches and other dissolved and solid organic matter. The potential exists for these industrial wastes to be anaerobically digested to produce biogas, or fermented to produce ethanol, and several commercial examples of waste-to-energy conversion already exist.

Municipal Solid Waste (MSW)
The biomass resource in MSW comprises the putrescibles, paper and plastic and averages 80% of the total MSW collected. Municipal solid waste can be converted into energy by direct combustion, or by natural anaerobic digestion in the landfill. At the landfill sites the gas produced by the natural decomposition of MSW (approximately 50% methane and 50% carbon dioxide) is collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. The organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation.

Sewage is a source of biomass energy that is very similar to the other animal wastes. Energy can be extracted from sewage using anaerobic digestion to produce biogas. The sewage sludge that remains can be incinerated or undergo pyrolysis to produce more biogas.

Black Liquor
Pulp and Paper Industry is considered to be one of the highly polluting industries and consumes large amount of energy and water in various unit operations. The wastewater discharged by this industry is highly heterogeneous as it contains compounds from wood or other raw materials, processed chemicals as well as compound formed during processing. Black liquor can be judiciously utilized for production of biogas using anaerobic UASB technology.


Posted by etienne mares / 7.3 years ago / 1407 hits